H 1 Filtering for Markovian Jump Linear Systems yMarcelo

نویسندگان

  • Marcelo D. Fragoso
  • Carlos E. de Souza
چکیده

O problema de ltragem H 1 para sistemas lineares a tempo-cont nuo e sujeito a falhas e investigado. E proposto uma metodologia para projetar ltros para a classe de sistemas descrita acima que garante um n vel prescrito de atenuaa c~ ao, na norma L 2 induzida pela relaa c~ ao sinal de ru do versus ^ erro de estimaa c~ ao. Os resultados principais s~ ao conseguidos via desigualdades matriciais lineares. ABSTRACT The problem of H 1 ltering for continuous-time linear systems with Markovian jump is investigated. It is assumed that the jumping parameter is available. We propose a methodology for designing Markovian jump linear lters which ensure a prescribed bound on the L 2-induced gain from the noise signals to the estimation error. The main result is tailored via linear matrix inequalities. Abstract The problem of H 1 ltering for continuous-time linear systems with Markovian jump is investigated. It is assumed that the jumping parameter is available. We propose a methodology for designing Markovian jump linear lters which ensure a prescribed bound on the L 2-induced gain from the noise signals to the estimation error. The main result is tailored via linear matrix inequalities.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

H∞ estimates for discrete-time Markovian jump linear systems

This paper deals with the problem of H∞ filtering for discrete-time Markovian jump linear systems. Predicted and filtered recursive estimates are obtained based on the game theory. In this paper, it is assumed that the jump parameter is not accessible. A numerical example is provided in order to show the effectiveness of the approach proposed.

متن کامل

H∞ Filtering for a Class of Piecewise Homogeneous Markovian Jump Nonlinear Systems

H∞ filtering problem for a class of piecewise homogeneous Markovian jump nonlinear systems is investigated. The aim of this paper is to design a mode-dependent filter such that the filtering error system is stochastically stable and satisfies a prescribedH∞ disturbance attenuation level. By using a new mode-dependent Lyapunov-Krasovskii functional, mixed mode-dependent sufficient conditions on ...

متن کامل

H∞ Filtering for Markovian Jump Systems with Time-varying Delays

This paper proposes a class of H∞ filter design for Markovian jump systems with time-varying delays. Firstly, by exploiting a new Lyapunov function and using the convexity property of the matrix inequality, new criteria is derived for the H∞ performance analysis of the filtering-error systems, which can lead to much less conservative analysis results. Secondly, based on the obtained conditions,...

متن کامل

Distributed sampled-data asynchronous H∞ filtering of Markovian jump linear systems over sensor networks

This paper is concerned with distributed sampled-data asynchronous H1 filtering for a continuous-time Markovian jump linear system over a sensor network, where jumping instants of system modes and filter modes are asynchronous. A group of sensor nodes are deployed to measure the system's output and to collaboratively share the measurement with neighboring nodes in accordance with Markovian swit...

متن کامل

A Mode-Independent H-infinity Filter Design for Discrete-Time Markovian Jump Linear Systems

This paper addresses the problem of H∞ filtering for discrete-time linear systems with Markovian jumping parameters. The main contribution of the paper is to provide a linear matrix inequality approach for designing an asymptotically stable linear time-invariant H∞ filter for systems where the jumping parameter is not accessible. The cases where the transition probability matrix of the Markov c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1996